Almost disjoint refinements

Barnabás Farkas ${ }^{\sharp}$

Hejnice 2014

\#Kurt Gödel Research Center (Vienna)

Motivation

Our senior hosts and I like this topic...

One more thing before refinements. . .

Please be so kind and don't make photos! Last time, on the webpage of the winterschool I found a photo of Dracula in the very morning after his bachelor party:

One more thing before refinements. . .

Please be so kind and don't make photos! Last time, on the webpage of the winterschool I found a photo of Dracula in the very morning after his bachelor party:

The concept

Given a family

$$
\mathcal{H}=\left\{H_{0}, H_{1}, H_{2}, \ldots, H_{\alpha}, \ldots\right\} \text { of "large" sets }
$$

we (at least some of us) want to find a family

$$
\begin{gathered}
\cup \cup \cup \cup \cup \ldots \cup, \ldots \\
\mathcal{A}=\left\{A_{0}, A_{1}, A_{2}, \ldots, A_{\alpha}, \ldots\right\} \text { of still "large" sets s.t. } \\
A_{\alpha} \cap A_{\beta} \text { is "small" for every } \alpha \neq \beta .
\end{gathered}
$$

"large" and "small"

Definition

Given an ideal \mathcal{I} on a set X. A family $\mathcal{A} \subseteq \mathcal{I}^{+}=\mathcal{P}(X) \backslash \mathcal{I}$ is \mathcal{I}-almost disjoint (\mathcal{I}-AD) if $A \cap B \in \mathcal{I}$ for every two distinct $A, B \in \mathcal{A}$.

From now on "large" $=" \in \mathcal{I}^{+} "$, "small" $=" \in \mathcal{I}$ ", and we are looking for \mathcal{I}-AD refinements of families of \mathcal{I}-positive sets.
For instance, \mathcal{I}^{+}does not have \mathcal{I}-AD refinements.

Analytic and coanalytic ideals

Proposition

If \mathcal{I} is an analytic or coanalytic ideal on ω, then there are perfect \mathcal{I}-AD families on every $X \in \mathcal{I}^{+}$.

Proof: It is enough working on ω because $\mathcal{I} \upharpoonright X$ is a continuous preimage of \mathcal{I} (hence also (co)analytic).

Analytic and coanalytic ideals

Proposition

If \mathcal{I} is an analytic or coanalytic ideal on ω, then there are perfect \mathcal{I}-AD families on every $X \in \mathcal{I}^{+}$.

Proof: It is enough working on ω because $\mathcal{I} \upharpoonright X$ is a continuous preimage of \mathcal{I} (hence also (co)analytic).
\mathcal{I} is meager hence (by Talagrand's characterization) there is a partition $\left(P_{n}\right)_{n \in \omega}$ of ω into finite sets s.t. $\left|\left\{n \in \omega: P_{n} \subseteq A\right\}\right|<\omega$ for every $A \in \mathcal{I}$.

Analytic and coanalytic ideals

Proposition

If \mathcal{I} is an analytic or coanalytic ideal on ω, then there are perfect \mathcal{I}-AD families on every $X \in \mathcal{I}^{+}$.

Proof: It is enough working on ω because $\mathcal{I} \upharpoonright X$ is a continuous preimage of \mathcal{I} (hence also (co)analytic).
\mathcal{I} is meager hence (by Talagrand's characterization) there is a partition $\left(P_{n}\right)_{n \in \omega}$ of ω into finite sets s.t. $\left|\left\{n \in \omega: P_{n} \subseteq A\right\}\right|<\omega$ for every $A \in \mathcal{I}$. Consider the family \mathcal{A}_{0} of branches of $2^{<\omega}$ in $\mathcal{P}\left(2^{<\omega}\right)$. It is a perfect (Fin-)AD family.
For each $A \in \mathcal{A}_{0}$ let $A^{\prime}=\bigcup\left\{P_{n}: n \in A\right\}, A^{\prime} \in \mathcal{I}^{+}$, and let $\mathcal{A}=\left\{A^{\prime}: A \in \mathcal{A}_{0}\right\}$. The function $\mathcal{P}(\omega) \rightarrow \mathcal{P}(\omega), A \mapsto A^{\prime}$ is injective and continuous hence \mathcal{A} is also perfect.

Generalizations to higher complexity?

Remark

In L there is a Δ_{2}^{1} ideal \mathcal{I} such that all \mathcal{I}-AD families are countable: We know that there is a Δ_{2}^{1} prime ideal \mathcal{J} in L (by the most natural recursive construction of a prime ideal from a Δ_{2}^{1}-good well-order of the reals).
Copy \mathcal{J} to every elements of an infinite partition of ω, and let \mathcal{I} be the generated ideal.

Refinements of $\mathcal{I} \cap V$ in $V^{\mathbb{P}}$

Theorem (Brendle, Farkas, Khomskii)
Let \mathcal{I} be an analytic or coanalytic ideal and assume that \mathbb{P} adds new reals. Then

$$
V^{\mathbb{P}} \vDash^{\text {" }} \mathcal{I}^{+} \cap V \text { has an } \mathcal{I} \text {-AD refinement." }
$$

In other words, there is a family $\left\{A_{X}: X \in \mathcal{I}^{+} \cap V\right\}$ in $V^{\mathbb{P}}$ s.t. (i) $A_{X} \subseteq X, A_{X} \in \mathcal{I}^{+}$for every $X \in \mathcal{I}^{+} \cap V$ and (ii) if $X \neq Y$ then $A_{X} \cap A_{Y} \in \mathcal{I}$.

Refinements of $\mathcal{I} \cap V$ in $V^{\mathbb{P}}$

Theorem (Brendle, Farkas, Khomskii)
Let \mathcal{I} be an analytic or coanalytic ideal and assume that \mathbb{P} adds new reals. Then

$$
V^{\mathbb{P}} \vDash^{\text {" }} \mathcal{I}^{+} \cap V \text { has an } \mathcal{I} \text {-AD refinement." }
$$

In other words, there is a family $\left\{A_{X}: X \in \mathcal{I}^{+} \cap V\right\}$ in $V^{\mathbb{P}}$ s.t. (i) $A_{X} \subseteq X, A_{X} \in \mathcal{I}^{+}$for every $X \in \mathcal{I}^{+} \cap V$ and (ii) if $X \neq Y$ then $A_{X} \cap A_{Y} \in \mathcal{I}$.

Proof: In a minute but first of all some examples...

Examples of Borel and (co)analytic ideals

F_{σ} ideals:

- Summable ideals, e.g. $\mathcal{I}_{1 / n}=\left\{A \subseteq \omega: \sum_{n \in A} \frac{1}{n}<\infty\right\}$.
- Farah's ideal:

$$
\mathcal{J}_{F}=\left\{A \subseteq \omega: \sum_{n \in \omega} \frac{\min \left\{n, \mid A \cap\left[2^{n}, 2^{n+1}\right)\right\}}{n^{2}}<\infty\right\} .
$$

- Tsirelson ideals (Farah, Solecki, Veličković).
- The van der Waerden ideal:
$\mathcal{W}=\{A \subseteq \omega: A$ does not contain arbitrary long AP's $\}$.
- The random graph ideal:

Ran $=\operatorname{id}(\{$ homogeneous subsets of the random graph $\})$.

- The ideal of graphs with finite chromatic number: $\mathcal{G}_{\mathrm{fc}}=\left\{E \subseteq[\omega]^{2}: \chi(\omega, E)<\omega\right\}$.

Examples of Borel and (co)analytic ideals

$F_{\sigma \delta}$ ideals:

- (Generalized) Density ideals, e.g. $\mathcal{Z}=\left\{A \subseteq \omega: \frac{|A \cap n|}{n} \rightarrow 0\right\}$.
- The trace of the null ideal: $\operatorname{tr}(\mathcal{N})=\left\{A \subseteq 2^{<\omega}: \lambda\left\{f \in 2^{\omega}: \exists^{\infty} n\right.\right.$ $f \upharpoonright n \in A\}=0\}$.
- The ideal of nowhere dense subsets of the rationals:
$\mathrm{Nwd}=\{A \subseteq \mathbb{Q}: \operatorname{int}(\bar{A})=\emptyset\}$.
- Banach space ideals (Louveau, Veličković).
$F_{\sigma \delta \sigma}$ ideals:
- The ideal Conv is generated by those infinite subsets of $\mathbb{Q} \cap[0,1]$ which are convergent in $[0,1]$, in other words
Conv $=\{A \subseteq \mathbb{Q} \cap[0,1]: \mid\{$ acc. points of $A($ in $\mathbb{R})\} \mid<\omega\}$.
- The Fubini product of Fin by itself:

Fin \otimes Fin $=\left\{A \subseteq \omega \times \omega: \forall^{\infty} n \in \omega\left|(A)_{n}\right|<\omega\right\}$.

Examples of Borel and (co)analytic ideals

A coanalytic(-complete) example, the ideal of graphs without infinite complete subgraphs:

$$
\mathcal{G}_{\mathrm{c}}=\left\{E \subseteq[\omega]^{2}: \forall X \in[\omega]^{\omega}[X]^{2} \nsubseteq E\right\}
$$

Refinements of $\mathcal{I} \cap V$ in $V^{\mathbb{P}}$

Theorem (Brendle, Farkas, Khomskii)
Let \mathcal{I} be an analytic or coanalytic ideal and assume that \mathbb{P} adds new reals. Then

$$
V^{\mathbb{P}} \models " \mathcal{I}^{+} \cap V \text { has an } \mathcal{I} \text {-AD refinement." }
$$

Refinements of $\mathcal{I} \cap V$ in $V^{\mathbb{P}}$

Theorem (Brendle, Farkas, Khomskii)

Let \mathcal{I} be an analytic or coanalytic ideal and assume that \mathbb{P} adds new reals. Then

$$
V^{\mathbb{P}} \models " \mathcal{I}^{+} \cap V \text { has an } \mathcal{I} \text {-AD refinement." }
$$

Proof: Fix perfect \mathcal{I}-AD families \mathcal{A}_{X} on every $X \in \mathcal{I}^{+}$. The statement " $\mathcal{A}_{X} \subseteq \mathcal{I}^{+}$and \mathcal{A}_{X} is \mathcal{I} - AD " is \prod_{2}^{1} hence absolute.

Refinements of $\mathcal{I} \cap V$ in $V^{\mathbb{P}}$

Theorem (Brendle, Farkas, Khomskii)

Let \mathcal{I} be an analytic or coanalytic ideal and assume that \mathbb{P} adds new reals. Then

$$
V^{\mathbb{P}} \models " \mathcal{I}^{+} \cap V \text { has an } \mathcal{I} \text {-AD refinement." }
$$

Proof: Fix perfect \mathcal{I}-AD families \mathcal{A}_{X} on every $X \in \mathcal{I}^{+}$. The statement " $\mathcal{A}_{X} \subseteq \mathcal{I}^{+}$and \mathcal{A}_{X} is $\mathcal{I}-\mathrm{AD}$ " is \prod_{2}^{1} hence absolute.
For every $X, Y \in \mathcal{I}^{+}$let $B(X, Y)=\left\{A \in \mathcal{A}_{X}: A \cap Y \in \mathcal{I}^{+}\right\}$. Then $B(X, Y)$ is a continuous preimage of \mathcal{I}^{+}(under $\mathcal{A}_{X} \rightarrow \mathcal{P}(\omega)$, $A \mapsto A \cap Y$), hence it is also (co)analytic.

Refinements of $\mathcal{I} \cap V$ in $V^{\mathbb{P}}$

Theorem (Brendle, Farkas, Khomskii)

Let \mathcal{I} be an analytic or coanalytic ideal and assume that \mathbb{P} adds new reals. Then

$$
V^{\mathbb{P}} \models " \mathcal{I}^{+} \cap V \text { has an } \mathcal{I} \text {-AD refinement." }
$$

Proof: Fix perfect \mathcal{I}-AD families \mathcal{A}_{X} on every $X \in \mathcal{I}^{+}$. The statement " $\mathcal{A}_{X} \subseteq \mathcal{I}^{+}$and \mathcal{A}_{X} is \mathcal{I} - AD " is ${\underset{\sim}{2}}_{1}^{1}$ hence absolute.
For every $X, Y \in \mathcal{I}^{+}$let $B(X, Y)=\left\{A \in \mathcal{A}_{X}: A \cap Y \in \mathcal{I}^{+}\right\}$. Then $B(X, Y)$ is a continuous preimage of \mathcal{I}^{+}(under $\mathcal{A}_{X} \rightarrow \mathcal{P}(\omega)$, $A \mapsto A \cap Y$), hence it is also (co)analytic.
Working in $V^{\mathbb{P}}$, enumerate $\left\{X_{\alpha}: \alpha<\mathfrak{c}^{V}\right\}$ the set $\mathcal{I}^{+} \cap V$. We will construct the desired \mathcal{I}-AD refinement $\left\{A_{\alpha}: \alpha<\mathfrak{c}^{V}\right\}$ by recursion on \mathfrak{c}^{V}. We will also define a sequence $\left(B_{\alpha}\right)_{\alpha<c^{v}}$ in \mathcal{I}^{+}.

Refinements of $\mathcal{I} \cap V$ in $V^{\mathbb{P}}$

\mathcal{A}_{X} is a perfect \mathcal{I}-AD family on $X \in \mathcal{I}^{+}$.
$B(X, Y)=\left\{A \in \mathcal{A}_{X}: A \cap Y \in \mathcal{I}^{+}\right\}$.
$\left\{X_{\alpha}: \alpha<\mathfrak{c}^{V}\right\}=\mathcal{I}^{+} \cap V$.
We construct the \mathcal{I}-AD refinement $\left\{A_{\alpha}: \alpha<\mathfrak{c}^{V}\right\}$ and the sequence $\left(B_{\alpha}\right)_{\alpha<\mathrm{c}}$ in \mathcal{I}^{+}.
Assume that $\left\{\boldsymbol{A}_{\xi}: \xi<\alpha\right\}$ and $\left(B_{\xi}\right)_{\xi<\alpha}$ are done, and let
$\gamma_{\alpha}=\min \left\{\gamma: B\left(X_{\gamma}, X_{\alpha}\right)\right.$ contains a perfect set (in V) $\} \leq \alpha$.
Let $B_{\alpha} \in B\left(X_{\gamma_{\alpha}}, X_{\alpha}\right) \backslash\left(V \cup\left\{B_{\xi}: \xi<\alpha\right\}\right)$ and $A_{\alpha}=X_{\alpha} \cap B_{\alpha} \in \mathcal{I}^{+}$.

Refinements of $\mathcal{I} \cap V$ in $V^{\mathbb{P}}$

\mathcal{A}_{X} is a perfect \mathcal{I}-AD family on $X \in \mathcal{I}^{+}$.
$B(X, Y)=\left\{A \in \mathcal{A}_{X}: A \cap Y \in \mathcal{I}^{+}\right\}$.
$\left\{X_{\alpha}: \alpha<\mathfrak{c}^{V}\right\}=\mathcal{I}^{+} \cap V$.
We construct the \mathcal{I}-AD refinement $\left\{A_{\alpha}: \alpha<\mathfrak{c}^{V}\right\}$ and the sequence $\left(B_{\alpha}\right)_{\alpha<\mathrm{c}}$ in \mathcal{I}^{+}.
Assume that $\left\{A_{\xi}: \xi<\alpha\right\}$ and $\left(B_{\xi}\right)_{\xi<\alpha}$ are done, and let

$$
\left.\gamma_{\alpha}=\min \left\{\gamma: B\left(X_{\gamma}, X_{\alpha}\right) \text { contains a perfect set (in } V\right)\right\} \leq \alpha
$$

Let $B_{\alpha} \in B\left(X_{\gamma_{\alpha}}, X_{\alpha}\right) \backslash\left(V \cup\left\{B_{\xi}: \xi<\alpha\right\}\right)$ and $A_{\alpha}=X_{\alpha} \cap B_{\alpha} \in \mathcal{I}^{+}$.
We claim that $\left\{\boldsymbol{A}_{\alpha}: \alpha<\mathfrak{c}^{V}\right\}$ is an \mathcal{I}-AD family. Let $\alpha \neq \beta$.
Case 1: If $\gamma_{\alpha}=\gamma_{\beta}=\gamma$ then $\boldsymbol{B}_{\alpha}, \boldsymbol{B}_{\beta} \in \mathcal{A}_{X_{\gamma}}$ are distinct, and hence $A_{\alpha} \cap A_{\beta} \subseteq B_{\alpha} \cap B_{\beta} \in \mathcal{I}$.

Refinements of $\mathcal{I} \cap V$ in $V^{\mathbb{P}}$

\mathcal{A}_{X} is a perfect \mathcal{I}-AD family on $X \in \mathcal{I}^{+}$.
$B(X, Y)=\left\{A \in \mathcal{A}_{X}: A \cap Y \in \mathcal{I}^{+}\right\} .\left\{X_{\alpha}: \alpha<\mathfrak{c}^{V}\right\}=\mathcal{I}^{+} \cap V$.
$\gamma_{\alpha}=\min \left\{\gamma: B\left(X_{\gamma}, X_{\alpha}\right)\right.$ contains a perfect set (in $\left.\left.V\right)\right\} \leq \alpha$,
$B_{\alpha} \in B\left(X_{\gamma_{\alpha}}, X_{\alpha}\right) \backslash\left(V \cup\left\{B_{\xi}: \xi<\alpha\right\}\right)$, and $A_{\alpha}=X_{\alpha} \cap B_{\alpha} \in \mathcal{I}^{+}$.
Case 2: $\gamma_{\alpha}<\gamma_{\beta}$. Then $B\left(X_{\gamma_{\alpha}}, X_{\beta}\right)$ does not contain perfect subsets.

Refinements of $\mathcal{I} \cap V$ in $V^{\mathbb{P}}$

\mathcal{A}_{X} is a perfect \mathcal{I}-AD family on $X \in \mathcal{I}^{+}$.
$B(X, Y)=\left\{A \in \mathcal{A}_{X}: A \cap Y \in \mathcal{I}^{+}\right\} .\left\{X_{\alpha}: \alpha<\mathfrak{c}^{V}\right\}=\mathcal{I}^{+} \cap V$. $\gamma_{\alpha}=\min \left\{\gamma: B\left(X_{\gamma}, X_{\alpha}\right)\right.$ contains a perfect set (in $\left.\left.V\right)\right\} \leq \alpha$, $B_{\alpha} \in B\left(X_{\gamma_{\alpha}}, X_{\alpha}\right) \backslash\left(V \cup\left\{B_{\xi}: \xi<\alpha\right\}\right)$, and $A_{\alpha}=X_{\alpha} \cap B_{\alpha} \in \mathcal{I}^{+}$.
Case 2: $\gamma_{\alpha}<\gamma_{\beta}$. Then $B\left(X_{\gamma_{\alpha}}, X_{\beta}\right)$ does not contain perfect subsets.
Case 2a: If \mathcal{I} is coanalytic, then $B\left(X_{\gamma_{\alpha}}, X_{\beta}\right)$ is analytic hence countable in V and so it is the same set in $V^{\mathbb{P}}$, in particular $B_{\alpha} \notin B\left(X_{\gamma_{\alpha}}, X_{\beta}\right)$, hence $A_{\alpha} \cap A_{\beta} \subseteq B_{\alpha} \cap X_{\beta} \in \mathcal{I}$.

Refinements of $\mathcal{I} \cap V$ in $V^{\mathbb{P}}$

\mathcal{A}_{X} is a perfect \mathcal{I}-AD family on $X \in \mathcal{I}^{+}$.
$B(X, Y)=\left\{A \in \mathcal{A}_{X}: A \cap Y \in \mathcal{I}^{+}\right\} .\left\{X_{\alpha}: \alpha<\mathfrak{c}^{V}\right\}=\mathcal{I}^{+} \cap V$. $\gamma_{\alpha}=\min \left\{\gamma: B\left(X_{\gamma}, X_{\alpha}\right)\right.$ contains a perfect set (in $\left.\left.V\right)\right\} \leq \alpha$,
$B_{\alpha} \in B\left(X_{\gamma_{\alpha}}, X_{\alpha}\right) \backslash\left(V \cup\left\{B_{\xi}: \xi<\alpha\right\}\right)$, and $A_{\alpha}=X_{\alpha} \cap B_{\alpha} \in \mathcal{I}^{+}$.
Case 2: $\gamma_{\alpha}<\gamma_{\beta}$. Then $B\left(X_{\gamma_{\alpha}}, X_{\beta}\right)$ does not contain perfect subsets.
Case 2a: If \mathcal{I} is coanalytic, then $B\left(X_{\gamma_{\alpha}}, X_{\beta}\right)$ is analytic hence countable in V and so it is the same set in $V^{\mathbb{P}}$, in particular $B_{\alpha} \notin B\left(X_{\gamma_{\alpha}}, X_{\beta}\right)$, hence $A_{\alpha} \cap A_{\beta} \subseteq B_{\alpha} \cap X_{\beta} \in \mathcal{I}$.
Case 2 b : If \mathcal{I} is analytic, then $B\left(X_{\gamma_{\alpha}}, X_{\beta}\right)$ is coanalytic. Therefore if $B\left(X_{\gamma_{\alpha}}, X_{\beta}\right)$ does not contain perfect subsets from V, then it is the same set in the extension: If it would contain a new real $E \in B\left(X_{\gamma_{\alpha}}, X_{\beta}\right) \backslash V$, then $E \in B\left(X_{\gamma_{\alpha}} X_{\beta}\right) \backslash L[r]$ but it contradicts the Mansfield-Solovay theorem. In particular, $B_{\alpha} \notin B\left(X_{\gamma_{\alpha}}, X_{\beta}\right)$ and it yields that $A_{\alpha} \cap A_{\beta} \subseteq B_{\alpha} \cap X_{\beta} \in \mathcal{I}$.

Questions

Question

Does there exist (consistently) a \sum_{2}^{1} or \prod_{2}^{1} ideal \mathcal{I} and a forcing notion \mathbb{P} which adds new reals such that the definition of \mathcal{I} is absolute between V and $V^{\mathbb{P}}$ but $V^{\mathbb{P}} \vDash$ " $\mathcal{I}^{+} \cap V$ has no \mathcal{I}-AD refinements"?

Questions

Question

Does there exist (consistently) a \sum_{2}^{1} or \prod_{2}^{1} ideal \mathcal{I} and a forcing notion \mathbb{P} which adds new reals such that the definition of \mathcal{I} is absolute between V and $V^{\mathbb{P}}$ but $V^{\mathbb{P}} \models$ " $\mathcal{I}^{+} \cap V$ has no \mathcal{I}-AD refinements"?

Question

Is it possible that \mathbb{P} adds new reals, does not collapse cardinals and $V^{\mathbb{P}} \models "[\omega]^{\omega} \cap V$ has a projective AD refinement"?

Thank you for your attention!

