Almost disjoint refinements

Barnabás Farkas[♯]

Hejnice 2014

[#]Kurt Gödel Research Center (Vienna)

Barnabás Farkas (KGRC)

Almost disjoint refinements

Hejnice 2014 1 / 16

э.

Our senior hosts and I like this topic...

One more thing before refinements...

Please be so kind and don't make photos! Last time, on the webpage of the winterschool I found a photo of Dracula in the very morning after his bachelor party:

A D M A A A M M

- A 🖻 🕨

One more thing before refinements...

Please be so kind and don't make photos! Last time, on the webpage of the winterschool I found a photo of Dracula in the very morning after his bachelor party:

Barnabás Farkas (KGRC)

Almost disjoint refinements

Given a family

 $\mathcal{H} = \{H_0, H_1, H_2, \dots, H_{\alpha}, \dots\}$ of "large" sets

we (at least some of us) want to find a family

UI UI UI ... UI ...

 $\mathcal{A} = \left\{ \textit{A}_0, \textit{A}_1, \textit{A}_2, \dots, \textit{A}_{\alpha}, \dots \right\}$ of still "large" sets s.t.

 $A_{\alpha} \cap A_{\beta}$ is "small" for every $\alpha \neq \beta$.

Definition

Given an ideal \mathcal{I} on a set X. A family $\mathcal{A} \subseteq \mathcal{I}^+ = \mathcal{P}(X) \setminus \mathcal{I}$ is \mathcal{I} -almost disjoint (\mathcal{I} -AD) if $A \cap B \in \mathcal{I}$ for every two distinct $A, B \in \mathcal{A}$.

From now on "large" = " $\in \mathcal{I}^+$ ", "small" = " $\in \mathcal{I}$ ", and we are looking for \mathcal{I} -AD refinements of families of \mathcal{I} -positive sets. For instance, \mathcal{I}^+ does not have \mathcal{I} -AD refinements.

イロト イヨト イヨト イヨト

Proposition

If \mathcal{I} is an analytic or coanalytic ideal on ω , then there are perfect \mathcal{I} -AD families on every $X \in \mathcal{I}^+$.

Proof: It is enough working on ω because $\mathcal{I} \upharpoonright X$ is a continuous preimage of \mathcal{I} (hence also (co)analytic).

Proposition

If \mathcal{I} is an analytic or coanalytic ideal on ω , then there are perfect \mathcal{I} -AD families on every $X \in \mathcal{I}^+$.

Proof: It is enough working on ω because $\mathcal{I} \upharpoonright X$ is a continuous preimage of \mathcal{I} (hence also (co)analytic).

 \mathcal{I} is meager hence (by Talagrand's characterization) there is a partition $(P_n)_{n \in \omega}$ of ω into finite sets s.t. $|\{n \in \omega : P_n \subseteq A\}| < \omega$ for every $A \in \mathcal{I}$.

Proposition

If \mathcal{I} is an analytic or coanalytic ideal on ω , then there are perfect \mathcal{I} -AD families on every $X \in \mathcal{I}^+$.

Proof: It is enough working on ω because $\mathcal{I} \upharpoonright X$ is a continuous preimage of \mathcal{I} (hence also (co)analytic).

 \mathcal{I} is meager hence (by Talagrand's characterization) there is a partition $(P_n)_{n\in\omega}$ of ω into finite sets s.t. $|\{n \in \omega : P_n \subseteq A\}| < \omega$ for every $A \in \mathcal{I}$. Consider the family \mathcal{A}_0 of branches of $2^{<\omega}$ in $\mathcal{P}(2^{<\omega})$. It is a perfect (Fin-)AD family.

For each $A \in A_0$ let $A' = \bigcup \{P_n : n \in A\}$, $A' \in \mathcal{I}^+$, and let $\mathcal{A} = \{A' : A \in A_0\}$. The function $\mathcal{P}(\omega) \to \mathcal{P}(\omega)$, $A \mapsto A'$ is injective and continuous hence \mathcal{A} is also perfect.

Remark

In *L* there is a Δ_2^1 ideal \mathcal{I} such that all \mathcal{I} -AD families are countable: We know that there is a Δ_2^1 prime ideal \mathcal{J} in *L* (by the most natural recursive construction of a prime ideal from a Δ_2^1 -good well-order of the reals).

Copy $\mathcal J$ to every elements of an infinite partition of ω , and let $\mathcal I$ be the generated ideal.

Let $\mathcal I$ be an analytic or coanalytic ideal and assume that $\mathbb P$ adds new reals. Then

 $V^{\mathbb{P}}\models$ " $\mathcal{I}^{+}\cap V$ has an \mathcal{I} -AD refinement."

In other words, there is a family $\{A_X : X \in \mathcal{I}^+ \cap V\}$ in $V^{\mathbb{P}}$ s.t. (i) $A_X \subseteq X, A_X \in \mathcal{I}^+$ for every $X \in \mathcal{I}^+ \cap V$ and (ii) if $X \neq Y$ then $A_X \cap A_Y \in \mathcal{I}$.

→ ∃ →

Let $\mathcal I$ be an analytic or coanalytic ideal and assume that $\mathbb P$ adds new reals. Then

 $V^{\mathbb{P}}\models$ " $\mathcal{I}^{+}\cap V$ has an \mathcal{I} -AD refinement."

In other words, there is a family $\{A_X : X \in \mathcal{I}^+ \cap V\}$ in $V^{\mathbb{P}}$ s.t. (i) $A_X \subseteq X, A_X \in \mathcal{I}^+$ for every $X \in \mathcal{I}^+ \cap V$ and (ii) if $X \neq Y$ then $A_X \cap A_Y \in \mathcal{I}$.

Proof: In a minute but first of all some examples...

< ロ > < 同 > < 回 > < 回 >

 F_{σ} ideals:

- Summable ideals, e.g. $\mathcal{I}_{1/n} = \{A \subseteq \omega : \sum_{n \in A} \frac{1}{n} < \infty\}.$
- Farah's ideal: $\mathcal{J}_{F} = \left\{ A \subseteq \omega : \sum_{n \in \omega} \frac{\min\{n, |A \cap [2^{n}, 2^{n+1})\}}{n^{2}} < \infty \right\}.$
- Tsirelson ideals (Farah, Solecki, Veličković).
- The van der Waerden ideal:
 W= {A ⊆ ω : A does not contain arbitrary long AP's}.
- The random graph ideal: Ran= id({homogeneous subsets of the random graph}).
- The ideal of graphs with finite chromatic number: $\mathcal{G}_{fc} = \{ E \subseteq [\omega]^2 : \chi(\omega, E) < \omega \}.$

 $F_{\sigma\delta}$ ideals:

- (Generalized) Density ideals, e.g. $\mathcal{Z} = \{A \subseteq \omega : \frac{|A \cap n|}{n} \to 0\}.$
- The trace of the null ideal: $\operatorname{tr}(\mathcal{N}) = \{A \subseteq 2^{<\omega} : \lambda \{f \in 2^{\omega} : \exists^{\infty} n f \upharpoonright n \in A\} = 0\}.$
- The ideal of nowhere dense subsets of the rationals: $Nwd = \{A \subseteq \mathbb{Q} : int(\overline{A}) = \emptyset\}.$
- Banach space ideals (Louveau, Veličković).

 $F_{\sigma\delta\sigma}$ ideals:

- The ideal Conv is generated by those infinite subsets of Q ∩ [0, 1] which are convergent in [0, 1], in other words
 Conv= {A ⊆ Q ∩ [0, 1] : |{acc. points of A (in ℝ)}| < ω}.

- The Fubini product of Fin by itself: Fin \otimes Fin= { $A \subseteq \omega \times \omega : \forall^{\infty} n \in \omega |(A)_n| < \omega$ }.

A coanalytic(-complete) example, the ideal of graphs without infinite complete subgraphs:

$$\mathcal{G}_{c} = \big\{ E \subseteq [\omega]^{2} : \forall X \in [\omega]^{\omega} \ [X]^{2} \nsubseteq E \big\}.$$

Let $\mathcal I$ be an analytic or coanalytic ideal and assume that $\mathbb P$ adds new reals. Then

 $V^{\mathbb{P}}\models$ " $\mathcal{I}^{+}\cap V$ has an \mathcal{I} -AD refinement."

< □ > < □ > < □ > < □ >

Let $\mathcal I$ be an analytic or coanalytic ideal and assume that $\mathbb P$ adds new reals. Then

 $V^{\mathbb{P}}\models$ " $\mathcal{I}^+\cap V$ has an \mathcal{I} -AD refinement."

Proof: Fix perfect \mathcal{I} -AD families \mathcal{A}_X on every $X \in \mathcal{I}^+$. The statement " $\mathcal{A}_X \subseteq \mathcal{I}^+$ and \mathcal{A}_X is \mathcal{I} -AD" is \prod_2^1 hence absolute.

< D > < P > < E > < E</p>

Let $\mathcal I$ be an analytic or coanalytic ideal and assume that $\mathbb P$ adds new reals. Then

$$V^{\mathbb{P}}\models$$
" $\mathcal{I}^+\cap V$ has an \mathcal{I} -AD refinement."

Proof: Fix perfect \mathcal{I} -AD families \mathcal{A}_X on every $X \in \mathcal{I}^+$. The statement " $\mathcal{A}_X \subseteq \mathcal{I}^+$ and \mathcal{A}_X is \mathcal{I} -AD" is \prod_2^1 hence absolute. For every $X, Y \in \mathcal{I}^+$ let $\mathcal{B}(X, Y) = \{A \in \mathcal{A}_X : A \cap Y \in \mathcal{I}^+\}$. Then $\mathcal{B}(X, Y)$ is a continuous preimage of \mathcal{I}^+ (under $\mathcal{A}_X \to \mathcal{P}(\omega)$, $A \mapsto A \cap Y$), hence it is also (co)analytic.

< ロ > < 同 > < 回 > < 回 >

Let $\mathcal I$ be an analytic or coanalytic ideal and assume that $\mathbb P$ adds new reals. Then

$$V^{\mathbb{P}}\models$$
" $\mathcal{I}^+\cap V$ has an \mathcal{I} -AD refinement."

Proof: Fix perfect \mathcal{I} -AD families \mathcal{A}_X on every $X \in \mathcal{I}^+$. The statement " $\mathcal{A}_X \subseteq \mathcal{I}^+$ and \mathcal{A}_X is \mathcal{I} -AD" is \prod_2^1 hence absolute.

For every $X, Y \in \mathcal{I}^+$ let $B(X, Y) = \{A \in \mathcal{A}_X : A \cap Y \in \mathcal{I}^+\}$. Then B(X, Y) is a continuous preimage of \mathcal{I}^+ (under $\mathcal{A}_X \to \mathcal{P}(\omega)$, $A \mapsto A \cap Y$), hence it is also (co)analytic.

Working in $V^{\mathbb{P}}$, enumerate $\{X_{\alpha} : \alpha < \mathfrak{c}^{V}\}$ the set $\mathcal{I}^{+} \cap V$. We will construct the desired \mathcal{I} -AD refinement $\{A_{\alpha} : \alpha < \mathfrak{c}^{V}\}$ by recursion on \mathfrak{c}^{V} . We will also define a sequence $(B_{\alpha})_{\alpha < \mathfrak{c}^{V}}$ in \mathcal{I}^{+} .

 $\begin{array}{l} \mathcal{A}_{X} \text{ is a perfect } \mathcal{I}\text{-}\mathsf{AD family on } X \in \mathcal{I}^{+}. \\ \mathcal{B}(X,Y) = \{A \in \mathcal{A}_{X} : A \cap Y \in \mathcal{I}^{+}\}. \\ \{X_{\alpha} : \alpha < \mathfrak{c}^{V}\} = \mathcal{I}^{+} \cap V. \\ \{X_{\alpha} : \alpha < \mathfrak{c}^{V}\} = \mathcal{I}^{+} \cap V. \\ \text{We construct the } \mathcal{I}\text{-}\mathsf{AD refinement } \{A_{\alpha} : \alpha < \mathfrak{c}^{V}\} \text{ and the sequence } \\ (B_{\alpha})_{\alpha < \mathfrak{c}^{V}} \text{ in } \mathcal{I}^{+}. \\ \text{Assume that } \{A_{\xi} : \xi < \alpha\} \text{ and } (B_{\xi})_{\xi < \alpha} \text{ are done, and let } \\ \gamma_{\alpha} = \min \{\gamma : \mathcal{B}(X_{\gamma}, X_{\alpha}) \text{ contains a perfect set (in } V)\} < \alpha. \end{array}$

Let $B_{\alpha} \in B(X_{\gamma_{\alpha}}, X_{\alpha}) \setminus (V \cup \{B_{\xi} : \xi < \alpha\})$ and $A_{\alpha} = X_{\alpha} \cap B_{\alpha} \in \mathcal{I}^+$.

・ロト ・ 同ト ・ ヨト ・ ヨ

 \mathcal{A}_{X} is a perfect \mathcal{I} -AD family on $X \in \mathcal{I}^{+}$. $B(X, Y) = \{A \in \mathcal{A}_X : A \cap Y \in \mathcal{I}^+\}.$ $\{X_{\alpha}: \alpha < \mathfrak{c}^{V}\} = \mathcal{I}^{+} \cap V.$ We construct the *I*-AD refinement $\{A_{\alpha} : \alpha < \mathfrak{c}^{V}\}$ and the sequence $(B_{\alpha})_{\alpha < c^{V}}$ in \mathcal{I}^{+} . Assume that $\{A_{\xi} : \xi < \alpha\}$ and $(B_{\xi})_{\xi < \alpha}$ are done, and let $\gamma_{\alpha} = \min \{ \gamma : B(X_{\gamma}, X_{\alpha}) \text{ contains a perfect set (in } V) \} \leq \alpha.$ Let $B_{\alpha} \in B(X_{\gamma_{\alpha}}, X_{\alpha}) \setminus (V \cup \{B_{\xi} : \xi < \alpha\})$ and $A_{\alpha} = X_{\alpha} \cap B_{\alpha} \in \mathcal{I}^+$. We claim that $\{A_{\alpha} : \alpha < \mathfrak{c}^{V}\}$ is an \mathcal{I} -AD family. Let $\alpha \neq \beta$. Case 1: If $\gamma_{\alpha} = \gamma_{\beta} = \gamma$ then $B_{\alpha}, B_{\beta} \in A_{X_{\alpha}}$ are distinct, and hence $A_{\alpha} \cap A_{\beta} \subseteq B_{\alpha} \cap B_{\beta} \in \mathcal{I}.$

Refinements of $\mathcal{I} \cap V$ in $V^{\mathbb{P}}$

 $\begin{array}{l} \mathcal{A}_{X} \text{ is a perfect } \mathcal{I}\text{-}\mathsf{A}\mathsf{D} \text{ family on } X \in \mathcal{I}^{+}. \\ \mathcal{B}(X,Y) = \{A \in \mathcal{A}_{X} : A \cap Y \in \mathcal{I}^{+}\}. \ \{X_{\alpha} : \alpha < \mathfrak{c}^{V}\} = \mathcal{I}^{+} \cap V. \\ \gamma_{\alpha} = \min \{\gamma : \mathcal{B}(X_{\gamma}, X_{\alpha}) \text{ contains a perfect set (in } V)\} \leq \alpha, \\ \mathcal{B}_{\alpha} \in \mathcal{B}(X_{\gamma_{\alpha}}, X_{\alpha}) \setminus (V \cup \{\mathcal{B}_{\xi} : \xi < \alpha\}), \text{ and } \begin{array}{l} \mathcal{A}_{\alpha} = X_{\alpha} \cap \mathcal{B}_{\alpha} \in \mathcal{I}^{+}. \end{array} \right.$

Case 2: $\gamma_{\alpha} < \gamma_{\beta}$. Then $B(X_{\gamma_{\alpha}}, X_{\beta})$ does not contain perfect subsets.

Refinements of $\mathcal{I} \cap V$ in $V^{\mathbb{P}}$

 $\begin{array}{l} \mathcal{A}_{X} \text{ is a perfect } \mathcal{I}\text{-}\mathsf{AD family on } X \in \mathcal{I}^{+}. \\ \mathcal{B}(X,Y) = \{A \in \mathcal{A}_{X} : A \cap Y \in \mathcal{I}^{+}\}. \ \{X_{\alpha} : \alpha < \mathfrak{c}^{V}\} = \mathcal{I}^{+} \cap V. \\ \gamma_{\alpha} = \min \{\gamma : \mathcal{B}(X_{\gamma}, X_{\alpha}) \text{ contains a perfect set (in } V)\} \leq \alpha, \\ \mathcal{B}_{\alpha} \in \mathcal{B}(X_{\gamma_{\alpha}}, X_{\alpha}) \setminus (V \cup \{B_{\xi} : \xi < \alpha\}), \text{ and } \mathcal{A}_{\alpha} = X_{\alpha} \cap \mathcal{B}_{\alpha} \in \mathcal{I}^{+}. \\ \text{Case 2: } \gamma_{\alpha} < \gamma_{\beta}. \text{ Then } \mathcal{B}(X_{\gamma_{\alpha}}, X_{\beta}) \text{ does not contain perfect subsets.} \\ \text{Case 2a: If } \mathcal{I} \text{ is coanalytic, then } \mathcal{B}(X_{\gamma_{\alpha}}, X_{\beta}) \text{ is analytic hence countable} \\ \text{in } V \text{ and so it is the same set in } V^{\mathbb{P}}, \text{ in particular } \mathcal{B}_{\alpha} \notin \mathcal{B}(X_{\gamma_{\alpha}}, X_{\beta}), \\ \text{hence } \mathcal{A}_{\alpha} \cap \mathcal{A}_{\beta} \subseteq \mathcal{B}_{\alpha} \cap X_{\beta} \in \mathcal{I}. \end{array}$

 $\begin{array}{l} \mathcal{A}_{X} \text{ is a perfect } \mathcal{I}\text{-}\text{AD family on } X \in \mathcal{I}^{+}. \\ \mathcal{B}(X,Y) = \{A \in \mathcal{A}_{X} : A \cap Y \in \mathcal{I}^{+}\}. \ \{X_{\alpha} : \alpha < \mathfrak{c}^{V}\} = \mathcal{I}^{+} \cap V. \\ \gamma_{\alpha} = \min \{\gamma : \mathcal{B}(X_{\gamma}, X_{\alpha}) \text{ contains a perfect set (in } V)\} \leq \alpha, \\ \mathcal{B}_{\alpha} \in \mathcal{B}(X_{\gamma_{\alpha}}, X_{\alpha}) \setminus (V \cup \{B_{\xi} : \xi < \alpha\}), \text{ and } A_{\alpha} = X_{\alpha} \cap B_{\alpha} \in \mathcal{I}^{+}. \\ \text{Case 2: } \gamma_{\alpha} < \gamma_{\beta}. \text{ Then } \mathcal{B}(X_{\gamma_{\alpha}}, X_{\beta}) \text{ does not contain perfect subsets.} \\ \text{Case 2a: If } \mathcal{I} \text{ is coanalytic, then } \mathcal{B}(X_{\gamma_{\alpha}}, X_{\beta}) \text{ is analytic hence countable} \\ \text{in } V \text{ and so it is the same set in } V^{\mathbb{P}}, \text{ in particular } B_{\alpha} \notin \mathcal{B}(X_{\gamma_{\alpha}}, X_{\beta}), \\ \text{hence } A_{\alpha} \cap A_{\beta} \subseteq \mathcal{B}_{\alpha} \cap X_{\beta} \in \mathcal{I}. \\ \text{Case 2b: If } \mathcal{I} \text{ is analytic, then } \mathcal{B}(X_{\gamma_{\alpha}}, X_{\beta}) \text{ is coanalytic. Therefore if} \end{array}$

Case 2b: If \mathcal{I} is analytic, then $B(X_{\gamma_{\alpha}}, X_{\beta})$ is coanalytic. Therefore if $B(X_{\gamma_{\alpha}}, X_{\beta})$ does not contain perfect subsets from V, then it is the same set in the extension: If it would contain a new real $E \in B(X_{\gamma_{\alpha}}, X_{\beta}) \setminus V$, then $E \in B(X_{\gamma_{\alpha}} X_{\beta}) \setminus L[r]$ but it contradicts the Mansfield-Solovay theorem. In particular, $B_{\alpha} \notin B(X_{\gamma_{\alpha}}, X_{\beta})$ and it yields that $A_{\alpha} \cap A_{\beta} \subseteq B_{\alpha} \cap X_{\beta} \in \mathcal{I}$.

Question

Does there exist (consistently) a Σ_2^1 or Π_2^1 ideal \mathcal{I} and a forcing notion \mathbb{P} which adds new reals such that the definition of \mathcal{I} is absolute between V and $V^{\mathbb{P}}$ but $V^{\mathbb{P}} \models \mathcal{I}^+ \cap V$ has no \mathcal{I} -AD refinements"?

Question

Does there exist (consistently) a Σ_2^1 or Π_2^1 ideal \mathcal{I} and a forcing notion \mathbb{P} which adds new reals such that the definition of \mathcal{I} is absolute between V and $V^{\mathbb{P}}$ but $V^{\mathbb{P}} \models \mathcal{I}^+ \cap V$ has no \mathcal{I} -AD refinements"?

Question

Is it possible that \mathbb{P} adds new reals, does not collapse cardinals and $V^{\mathbb{P}} \models "[\omega]^{\omega} \cap V$ has a projective AD refinement"?

Thank you for your attention!